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Abstract
Computer simulation investigations of two model fluids interacting through
short-range forces are presented. In one case, the chosen potential parameters
make the model suitable to represent C60 fullerenes. For such a system, Monte
Carlo calculations of the free energy are performed in order to determine the
solid–liquid coexistence line and the whole phase diagram. In the other case,
the potential is adapted to model the interaction between globular proteins
in aqueous solutions, by obtaining a system whose phase diagram is known
to have only metastable liquid–vapour equilibrium. We report on a previous
study of such a fluid, concerning extensive molecular dynamics simulations of
the crystallization process, and discuss the related results in the present context.
The peculiar features of the phase behaviour of the two model systems, as well
as their sensitive dependence on the potential properties, are also documented.

1. Introduction

Model fluids interacting through short-range forces are of current interest in the study of a
number of physical systems constituted by macroparticles; the basic reason for such attention
is that systems such as, e.g. protein solutions [1] or colloidal suspensions [2], are to a first
approximation representable as one-component fluids in which the macromolecules or the
colloidal particles are assumed to interact via a pairwise ‘effective’ potential which takes
into account in an averaged manner the presence of the solvent and of other diluted particle
species. A similar modelization can also be adopted for C60 [3, 4] and C70 [5] fullerenes, and
for metal dichalcogenides [6]; in these systems, in fact, the interaction among atoms belonging
to different molecules can be integrated over the molecular surfaces to yield a much simpler
sphericalized pair potential [3].
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A main topic in the physics of such model one-component fluids is to establish the role of
solid–liquid versus solid–vapour equilibrium in determining the phase portrait of the system;
in particular, one is interested to ascertain whether the nature of the interaction forces is such
to prevent the formation of a stable liquid phase. This point is of interest in order to predict the
phase behaviour of colloidal suspensions, a knowledge crucially important in many industrial
processes. Also, the possible existence of liquid carbon, in the fullerene molecular form, has
obviously attracted great attention early on since this hypothesis has been supported by specific
calculations [7]. Finally, the interplay of the solid–vapour versus the solid–liquid transition
appears to be directly involved in the process of protein crystallization [8], a phenomenon
which still remains substantially unpredictable inasmuch as it has usually been tackled on the
basis of empirical experimental protocols [9]. In this same concern, one is also interested to
test the capability of the adopted modelization in order to cope with the complex processes of
nucleation and crystal growth observed in real protein solutions.

In this work we report the results of extensive computer simulation studies concerning the
mentioned different issues. In particular, we investigate the phase behaviour of two different
short-range model potentials suited to describe, under appropriate choices of the potential
parameters, fullerene materials or protein solutions.

We first consider C60 fullerene. The existence of a stable liquid phase for such a system,
modelled in terms of rigid sphericalized molecules by Girifalco [3], has been the object of
initial controversy [7,10]. We here determine by means of Monte Carlo (MC) simulations the
free energy of the fluid and solid phase of the Girifalco model of C60, and compare the phase
diagram that we obtain with previous predictions [7,11,12]; we are thus able to assess both the
presence of a liquid pocket in the phase diagram of the model, and the accuracy of one-phase
freezing criteria [13, 14] in terms of which the boundaries of the liquid phase have elsewhere
been established [7, 11, 15].

We then consider a generalized Lennard-Jones model, whose phase diagram mimics that
of a typical globular protein solution [16], and report the main conclusions presented in two
previous papers [17] concerning the kinetics of crystallization of such a system. In these works,
very long molecular dynamics (MD) simulations were performed along a thermodynamic path
which extends far beneath the sublimation line of the system, to reach the metastable liquid–
vapour binodal; this allows one to monitor the onset of nucleation and the early formation of
ordered solid aggregates. We discuss these results in the present more general context of the
relationship between the model potential features and the associated phase behaviour.

It is worth noting that the connection established here between the model potentials and
specific systems is by no means unique, and therefore the results are open to a more general
applicability than reported here.

2. Free energy determination of the phase diagram of C60

In substantial agreement with the early predictions of Cheng et al [7], recent theoretical and
computer simulation investigations [11, 12, 15] of the Girifalco model of C60 [3] have con-
firmed that this system possesses a stable liquid phase, albeit this turns out to be confined
to a relatively small temperature range, when compared with the magnitude of the estimated
critical temperature [12]. This peculiar feature of the phase diagram is basically related to the
characteristics of the intermolecular potential whose short-range nature makes C60 a borderline
system for the existence of the liquid phase, as it will be further confirmed by the present study.

We recall that the Girifalco potential, displayed in figure 1, is written as

V (r) = −α1
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Figure 1. The C60 model potential of equation (1) (circles) and the generalized Lennard-Jones
potential of equation (4) (squares); also displayed, the Lennard-Jones 12-6 potential (curve).

where s = r/d, α1 = N2A/12d6, andα2 = N2B/90d12; N andd = 0.71 nm are the number of
carbon atoms and the diameter, respectively, of the fullerene particles, A = 32×10−60 erg cm6

and B = 55.77 × 10−105 erg cm12 are constants entering the Lennard-Jones 12-6 potential
through which two carbon sites on different sphericalized molecules are assumed to interact.

We display V (r) in figure 1, by adopting reduced energy and length units, ε and σ ,
respectively, ε being the depth of the potential well and σ the (finite) distance at which V (r)

vanishes (i.e. V (σ) = 0). It is easy to recognize from the figure that as r increases beyond the
deep minimum position, V (r) approaches zero values within a distance approximately equal to
2σ , that is, with a much faster decay than the Lennard-Jones potential, also shown in figure 1.

The extension in temperature of the liquid phase is obviously given by the difference
between the critical and the triple point temperatures; it thus becomes crucial, for the purpose
of a confident estimate of such a range, to obtain an accurate determination of both the liquid–
vapour binodal and the freezing line of the system.

As far as the determination of liquid–vapour equilibrium in C60 is concerned, extensive
Gibbs ensemble MC simulations for the Girifalco model have been reported by two of us some
time ago [11]; the related results were later substantially confirmed by free energy calculations
based on MC simulations [12]. The knowledge of such an equilibrium line can then be
considered as quite well assessed.

Turning now to the determination of the solid–liquid equilibrium in the same model,
free energy calculations have also been reported in [12], resulting in a temperature range of
existence of the liquid phase sensibly smaller than that reported in [7]. In [7], as well as in other
related papers [11, 15], however, the freezing boundary was determined by using liquid state
integral equation theories, supplemented by one-phase freezing criteria [13, 14]. These latter
typically rest on peculiar values attained by some structural or thermodynamic quantity of the
fluid phase, and the ensuing freezing line determinations are, of course, less rigorous than
those based on the much more demanding free energy calculations. The emerging discrepancy
between the two sets of results is certainly worthy of assessment; this is the first point, in fact,
that we address in this work.
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Figure 2. The integration path over λ which transforms the C60 solid (λ = 0) into an Einstein
crystal (λ = 1, see text), at T = 2100 K and ρ = 1.375 nm−3, and for several system sizes; circles,
N = 256; triangles, N = 864; crosses, N = 2916. The curve is a smooth interpolation of the
N = 864 data points.

Specifically, we report new and extensive MC estimates of the free energy in both the
solid (fullerite) and the liquid phase of the Girifalco C60 model, subject to a careful control of
the dependence of the results on the simulation conditions. These calculations, in conjunction
with the previous Gibbs Ensemble determination of the liquid–vapour binodal [11], allow us
to fully predict the phase diagram of the model.

First of all, the free energy F along the supercritical isotherm T = 2100 K has been
determined as a function of the density ρ by integrating the equation of state along the fluid
and the solid branch of the system [18]:

βF(ρ)

N
− βF(ρ̄)

N
=

∫ ρ

ρ̄

βP (ρ ′)
ρ ′

dρ ′

ρ ′ . (2)

Here, P(ρ) is the pressure of the system at a given density ρ and β is the inverse of the
temperature in units of the Boltzmann constant kB; ρ̄ is a suitable reference density, for which
the thermodynamic potentials are exactly known (see later). The equation of state of the system
is then determined through standard MC simulations, at constant pressure or constant volume,
on a sample composed of N = 864 particles enclosed in a cubic box with periodic boundary
conditions.

As far as the reference free energy of the solid phase, Fs(ρ̄), is concerned, this has been
determined according to the well established Frenkel and Ladd [19] procedure, by performing
a thermodynamic integration over a coupling parameter λ which transforms the C60 interaction
in the solid fullerite into a corresponding harmonic coupling with the lattice sites (Einstein
crystal) at the same density [20]; the results at ρ̄ = 1.37 nm−3 are shown in figure 2. Then
the integration over λ fully determines the C60 free energy Fs(ρ̄ = 1.37). An investigation of
the dependence of the free energy on the number of particles, performed with N = 256, 864
and 2916 particles, is also reported in figure 2; it appears that the size of the system has almost
negligible effect on the behaviour of Fs(ρ̄).

Turning now to the reference free energy of the liquid phase, Fl(ρ̄) at T = 2100 K, this
has been calculated at the intermediate density ρ̄ = 0.6 nm−3, through the Widom test particle
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Figure 3. Free energy (left) and chemical potential (right) of the C60 model at T = 2100 K;
squares: solid phase; circles: liquid phase; the full curves are smooth interpolations of the data
points. The dashed line in the left panel is the common tangent to both branches; in the right panel,
the diamond indicates the coexistence pressure.

method [20,21]. At this density, a stable statistics for the excess chemical potential of the fluid
was cumulated over MC block runs of about 5 × 30 000 steps, with a MC step consisting of
a trial displacement of each particle, followed by as many as ∼50 trial insertions of a ghost
particle in the sample.

The behaviour of the free energy, along the isotherm T = 2100 K, determined through (2),
is displayed in the left panel of figure 3 as a function of the inverse of the density. The
equilibrium condition follows by the equality of the chemical potential as a function of the
pressure in both the liquid and the solid phase (figure 3, right panel); obviously, this condition
corresponds to the common tangent construction also shown in the left panel of figure 3. The
coexisting densities can then be obtained from the equilibrium pressure, through the equation
of state P versus ρ, displayed in figure 4.

Once the thermodynamic potentials are known along the same isotherm, the free energy at
different temperatures can be calculated by a straightforward integration of the internal energy
U along an isochore path, according to the formula

βF(T )

N
− βF(T̄ )

N
= −

∫ T

T̄

U(T ′)
NkBT ′

dT ′

T ′ (3)

where T̄ = 2100 K. Four isochores in the liquid range ρ = 0.80–0.95 nm−3, and three
isochores in the solid phase at ρ = 1.25, 1.27 and 1.30 nm−3, respectively, have been
characterized in this way. The calculation of the coexisting densities follows the procedure
outlined earlier, resulting in the phase diagram displayed in figure 5. We observe that the liquid
branch of the chemical potential crosses the solid branch only for T > 1850 K; below this
temperature, the intersection is shifted to the vapour side of the binodal, thus giving rise to a
solid–vapour equilibrium, as shown in figure 5. The chemical potential of the vapour phase at
T = 1850 K has been calculated by a direct Widom test in the density range ρ = 0.1–0.2 nm−3.

The present investigation of the solid–liquid coexistence, combined with our previous
Gibbs Ensemble calculation of the binodal line, also displayed in figure 5, yields a triple point
temperature Ttr immediately above T = 1850 K, our freezing line resulting slightly shifted to
higher density with respect to that reported in [12], where a Ttr = 1880 K estimate is given.

In figure 4 we also report the equilibrium liquid density that would be predicted by the one-
phase entropic criterion of freezing [13] adopted in previous works. It appears that this approach
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Figure 4. Equation of state of the C60 model at T = 2100 K. Squares: solid phase; circles: liquid
phase; the full curves are smooth interpolations of the data points; the coexisting densities are
shown as diamonds; the triangle indicates the estimate of the coexistence liquid density according
to the one-phase entropic criterion.
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Figure 5. The phase diagram of the Girifalco C60 model. Diamonds: fluid–solid coexistence;
circles: liquid–vapour binodal line, according to Gibbs Ensemble calculations of [11].

leads to an overestimate of the freezing density by approximately 10% at T = 2100 K. The
related shift of the freezing line to higher densities results in a lower triple point temperature,
which in fact has been estimated as low as ∼1500–1700 K, depending on the integral equation
theory adopted [7, 11, 15].

We point out that the trend to overestimate the freezing density is not unique to the
adopted entropic criterion, and that similar results are obtained [22] if the Hansen–Verlet
prescription [14] for the height of the structure factor in the liquid phase is used. On the other
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Figure 6. Phase diagram of the generalized Lennard-Jones potential of (4), displayed in figure 1.
The dashed curve indicates the metastable liquid–vapour separation; simulations have been
performed along the isochore path represented by the vertical dot-dashed line.

hand, these one-phase criteria are known to work quite accurately for hard sphere fluids, and
for fluids characterized by very repulsive potentials at short range [23, 24]. It is interesting to
recall in this concern that Louis [25] have recently proposed a classification of fluids in two
broad categories, according to whether the physical behaviour of these systems is dominated by
excluded volume effects and geometrical arrangement (and hence entropy), or by the strength
of the attractive and rapidly decaying terms. For this latter kind of systems they argue that most
of the behaviours encountered in hard-sphere dominated fluids will not be met. In this respect,
the lack of a quantitatively accurate estimate of the freezing line of C60 when the entropic or
the Hansen–Verlet prescriptions are adopted, could be interpreted rather than as a ‘failure’ of
the criteria themselves, as a manifestation of their only qualitative applicability in this context.

3. Onset of crystallization in the metastable phase of a generalized Lennard-Jones
model of globular protein solutions

We have investigated by MD simulations [17] the phase transformations occurring in a system
of spherical particles interacting through the short-range potential

V (r) = 4ε

α2

{[( r

d

)2
− 1

]−6

− α

[( r

d

)2
− 1

]−3
}

(4)

where d is the distance of minimum approach between two particles. The potential (4),
shown in figure 1, constitutes a generalization of the Lennard-Jones potential; the parameter α

determines the range of the attractive interactions with respect to the range d of the repulsive
part; in particular, large values of α correspond to a deep and narrow attractive well. The
model (4), with α = 50, has been recently adopted by ten Wolde and Frenkel to study the
phase behaviour of globular protein solutions [16]. The phase diagram of such a fluid is
characterized by the absence of a stable liquid phase [16]; this is shown in figure 6, where it
appears that the binodal critical point lies beneath the sublimation line, thus making liquid–
vapour metastable with respect to solid–vapour equilibrium.
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In a previous study of the aforementioned fluid [17], the investigation has been focused
on the crystallization process, which represents the necessary and often limiting step in the
experimental determination of protein structures. In particular, extensive MD simulations
were performed in the NVE ensemble, along the isochore path at ρσ 3 = 0.5, by starting
from a well equilibrated sample in the homogeneous fluid region at T/ε = 1 (see figure 6)
and by inducing metastability by progressively cooling the system below the fluid–solid and
the (metastable) liquid–vapour coexistence. All simulations concerned a sample of 2592
particles, enclosed in a tetragonal box with periodic boundary conditions and with box sides
such that Lx = Ly and Lz = 3Lx ; with such a choice, the phase separation occurs by
forming an interface perpendicular to the z-axis, which corresponds to the lowest interfacial
area.

The important property of this model is that, down to large undercoolings, crystallization
does not occur by a catastrophic process, as often observed with Lennard-Jones potentials,
suggestive of mechanical instabilities in the system. Instead, it takes place by a sequence
of events that are reminiscent of classical nucleation theory, extending on a time scale that
is suitable for a detailed analysis by MD simulation. Moreover, the initial nucleation events
appear to be well localized in space, reducing the effect of the small size of the simulation
cell.

These properties allow one to analyse in detail how the crystallization process occurs in a
simulated system, and to study the interplay of crystallization with the metastable liquid–vapour
separation. The simulation runs were extended over very long trajectories (up to 76×106 MD
steps), corresponding to a real time span of the order of µs, if the parameters of the potential
are interpreted in terms of typical globular protein sizes, masses and interaction strengths.

Within the time span of the simulation, no phase transition was observed above the
metastable binodal line, despite the high degree of undercooling for the homogeneous fluid
phase. The absence of nucleation is probably due to the high surface tension of the crystal–
fluid interface. Upon crossing the liquid–vapour line, one can observe the corresponding
phase separation that occurs with only limited hysteresis. The liquid–vapour state appeared
to be stable during simulations of ordinary length (i.e. of the order of 106 MD steps, or 103

characteristic time units) down to T = 0.37, a temperature ∼8% below the fluid–fluid phase
separation line. At this temperature, crystallization started with only a negligible thermal
activation.

A sequence of snapshots of MD configurations at progressively decreasing temperatures
is shown in figure 7, together with the radial distribution functions for each temperature. The
shapes of the radial distribution functions, with the rapid heralding of structured peaks in the
tiny temperature range between 0.41 and 0.38, document quantitatively the sequence of phase
transformations.

The adopted modelization of globular protein solutions is by all means a drastic one.
Nonetheless, qualitative similarities survive in agreement with experimental data. We
observe, for instance, that the metastable liquid–vapour separation dramatically enhances the
crystallization kinetics, very likely because the presence of a high density fluid decreases both
the interfacial free energy requested to nucleate the crystal, and the amplitude of the density
fluctuation required to reach the solid density. We also observe that crystallization appears
not to be accompanied by any precursor effect; in fact, when any of the criteria we devised
to this aim were met, the nucleation process was in any case already well underway. Our
observations do not strictly prove, however, that precursors do not exist, but only that the chain
of events leading to the transition involves the non-trivial coupling of several variables, as
shown experimentally in [26]. We refer the interested reader to the original papers [17] for
more details.
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Figure 7. Snapshots of MD configurations at progressively decreasing temperatures together with
the corresponding radial distribution functions; (a) T = 0.43, metastable homogeneous fluid;
(b) T = 0.41, low-density bubble in a high-density fluid, just below the metastable liquid–vapour
separation; (c) T = 0.38, crystal nucleus in the high-density fluid; (d) T = 0.36, extended defective
crystal phase.

(This figure is in colour only in the electronic version)
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4. Conclusions

The reported results concern the phase behaviour of two different model potentials
characterized by a rapid decay of the interaction strength with the distance. As is apparent
from figure 1, the first potential considered, initially proposed by Girifalco to model C60,
substantially vanishes within twice the zero potential distance. The phase diagram of such a
model exhibits, according to the free energy calculations that we have reported here, a well
defined, albeit narrow (in temperature), liquid pocket. This result further assesses similar
previous estimates by various authors, and substantially confirms the first evidence of the
existence of the liquid phase for such a model C60 [7]. We discuss the emerging discrepancy
with the triple point temperature estimates based on one-phase freezing criteria [7, 11, 15].

It is also worth noting the deep transformation undergone by the phase diagram of short-
range potential models, induced by tiny variations in the long-range decay of the interaction
forces. This emerges from the comparison of the Girifalco with the generalized Lennard-
Jones potential (see figure 1). We observe that the differences between the two patterns are
rather small; yet, they are sufficient to induce profound modifications in the phase diagram and
phase behaviour of the two models. In fact, the stable liquid phase disappears for the shorter-
range potential, the liquid–vapour line shifting considerably beneath the sublimation line. The
peculiar nature of such a metastable binodal curve emerges from MD simulations, which show
that only when liquid–vapour separation takes place, does the crystallization process really
start in the metastable fluid phase.
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